Three steps to heaven

Three steps to heaven
Three steps to heaven

Bart Simpson, business development lead at Delcam, part of Autodesk examines the three design and manufacturing trends the aerospace industry needs to be taking advantage of.

Across the spectrum of manufacturing, from large scale production lines to tiny workshops, the industry is facing massive disruption. Advances in computing power, automation and connected devices, coupled with changing consumer demands are revolutionising the way things are designed and built. The entire manufacturing industry is at a point where it has access to revolutionary technology and no business can afford to miss the boat.

Nowhere is this more evident than in aerospace manufacturing, where the benefits to be gained from adopting new manufacturing and design techniques are huge. But with so many options out there, what are the main areas of disruption the aerospace manufacturing industry should be focused on? The three technologies below reflect the entire manufacturing cycle, from design to assembly, and show just what can be done with the newest approaches to manufacturing.

Generative design

As a sector, aerospace is particularly concerned with the performance of the parts being produced. Not just from a safety point of view, but also with efficiency in mind. The lighter a part, the less fuel an aircraft uses, and this is of paramount importance with fuel being the main cost of aircraft operation. As a result, investing more in the design and manufacturing processes to ensure the aircraft is as efficient as possible is essential to the aerospace manufacturing industry.

This is where the next generation of design technology comes into play – generative design. Thanks to advances in design software and computing, software can now design the optimal part based on the parameters of how the part needs to perform. For example, you can specify the loads a new bracket has to withstand during aircraft operation, and then the software can optimise the bracket's design based on this. This can provide a set of design solutions, which are inherently different to traditional shapes, and these can act as drivers in the overall design process. What the industry has seen over the years is parts being designed to match the manufacturing processes available at the time, and generative design is another example of this. As the industry starts to get behind generative design, we'll see the next generation of aircraft parts starting to take shape.

Hybrid manufacturing

Of course, new shapes require new manufacturing processes, and this is where additive manufacturing comes into its own, as it enables the complex geometries that are typical of generative design to be created more easily than traditional methods. However, this is only part of the story, as additive manufacturing is not always the best manufacturing process for some designs. Taking a simple example, it is much more efficient and more accurate to create a hole in something with a drill than with additive manufacturing.

At the same time, subtractive manufacturing can be incredibly wasteful, with large amounts of the original material being discarded in order to get to the finished shape from a block of an expensive material like titanium. By combining the two processes in a hybrid approach, the aerospace manufacturing industry can take advantage of the best of both techniques. For example, a part can be made by using additive techniques to create a near-net shape, and then using subtractive methods to turn this into the final product. In this way, less material is wasted, and the ultimate shape is something that couldn't be created efficiently with either technique.

The use of robotics

Traditionally, robots in the manufacturing process have been used to do a limited range of repetitive tasks, mainly in handling materials and components. While this is now well established on large scale production lines, we're now at a point where robots are capable of so much more. In particular, we can connect robots to a broad range of sensors, which allows them to capture information about the parts they're working on. This data can then be fed back to the control system, which can then make adjustments to the robot's operation and drive greater efficiencies during the process.

A great example of where robotics can revolutionise the manufacturing process is by replacing laborious, time intensive tasks that require a manual worker's eye for detail, such as polishing and finishing. Human beings are naturally good at the kind of feedback loop necessary for getting a smooth surface, but there are limitations in the accuracy of all manual operations and there are increasing health and safety considerations over these repetitive tasks. New software developments mean that robots can now do many of these tasks. By visually scanning a part they can more consistently detect blemishes and surface defects, and accurately measure, for example, how much polishing the surface needs and where it is required.

What makes robots even more useful for the manufacturing sector is that now it is also possible to generate a modified set of instructions for the robot for each part it has to work on. Thanks to the computing power and automated systems now available, these instructions can be done on the fly, based on the feedback data being collected by the robot. This approach has massive potential for improving the productivity of the robot and the quality and consistency of the parts being produced.

The future of making aircraft?

Rising demand for air travel has created a massive opportunity for every company in the aircraft manufacturing supply chain, and there has never been a time when so much disruptive technology has been at its finger tips. At the same time, it can be difficult to know where to start. Rather than trying to change everything at once, take a look at your whole manufacturing process, from design to manufacture, and work out where a small change, whether a different approach to design or increased automation, can have the most impact. Given the aerospace manufacturing sector's focus on manufacturing productivity and ensuring its parts are as efficient as possible, even the smallest step towards the future of making things can have a massive impact.

Related Articles

Imagination with simulation

Siemens PLM Software explains how its LMS Imagine.Lab Amesim software helps to smooth out Aircelle's engine nacelle actuation systems.
8 years ago Features

Go with the flow

Mike Richardson meets with Porvair Filtration Group's aerospace market manager, Andy Cowan to hear how the company's proactive approach to filtration and engineering solutions helps it reduce costs – and win awards too!
8 years ago Features

When three becomes one

With its Hypertac, Sabritec and IDI product brands now consolidated under one roof, Mike Richardson meets Smiths Connectors' vice-president sales EMEA, Giuseppe Lancella to hear whether or not for one company, three's a crowd.
9 years ago Features
Most recent Articles

The MAA manifesto launched

Sixty representatives from across the MAA Board and its three expert working groups met on 1st May 2024 to establish 20 practical ways government can get behind the 1,000+ high-technology aerospace supply chain companies in the UK.
2 days ago News

Login / Sign up