Nikon unveils Lasermeister additive system and 3D scanner

Nikon has announced the release of its next-generation metal additive manufacturing system, the Lasermeister LM300A, which uses directed energy deposition (DED) technology, as well as the complementary 3D scanner, Lasermeister SB100.

These industry-leading products represent the latest strategic additions to the Nikon Advanced Manufacturing solutions portfolio.

The Lasermeister 100A metal additive manufacturing system series was launched targeting mainly research purposes. Now, Nikon is introducing this latest solution specially developed for industrial applications. Building upon the proven high-precision processing capabilities of the previous systems, the LM300A supports an expanded build area and is also equipped with the newly developed 3D scanner, the SB100. This advanced 3D scanner supports factory automation by enabling users to scan each workpiece with the click of a button and then automatically generates the tool path data for the 3D printing process to begin. The successful pairing of the LM300A and SB100 deliver tremendous value to the industry, particularly for applications such as repairing turbine blades and moulds.

Currently turbine blades are used in aircraft engines and power generators to help extract energy from hot gas. However, due to exposure to harsh conditions, these turbine blades degrade over time and periodically the worn-out blades must be repaired to continue usage. The traditional turbine blade repair process involves cutting and scraping the worn area for each blade, which takes time and generates waste. The blade is then manually welded for repair and grinding is performed to restore the part to its ideal shape. This rigorous repair process introduces many challenges including difficulties in securing highly skilled welders, which can lead to quality consistency issues and long lead times.

To address the numerous challenges in the conventional repair process, Nikon developed the LM300A and SB100 as a game-changing solution that can reduce lead-times up to 65% of the conventional welding process and minimise post processing requirements. In addition to the turbine blade example discussed previously, this innovative technology will provide great value to automobile, railway, machinery industry and other repair applications as well.

Key benefits

1) Seamless Scanning and Tool Path Generation

By simply placing a workpiece (e.g. worn-out blade) inside the SB100, with a click of a button, the module begins to scan and measure the workpiece inside the chamber. It then compares its current actual shape with its ideal CAD model to extract the difference, using a built-in high-precision scanning feature. The SB100 then automatically generates the tool path data for repair specific to each damaged or worn-out workpiece. This entire process is easily completed and does not require any special skills or manual cutting of the repair area. The tool path data is then transferred to the LM300A to initiate high-precision additive manufacturing. Once the additive process is completed, the workpiece can be placed back into SB100, where it will scan and inspect to confirm the repair was performed to its ideal model. This automation and streamlined workflow can vastly contribute to reduced costs and lead time for industrial users.

2) High-precision Processing for Various Metal Materials

LM300A performs high-precision processing by leveraging advanced optical and precision control technology developed across decades of Nikon semiconductor lithography systems. In the case of turbine blade repair for example, the LM300A can process within the accuracy of +0mm to maximum +0.5mm difference for the XY-axis direction and +0.5 mm to maximum +1.5 mm difference for the Z-axis direction, achieving ultra-high precision. In addition, real-time laser power control by the melt pool feedback system delivers smooth surface finishing and precise processing of parts, ultimately achieving crack-less repair with optimal quality and stability.

The ability to build onto existing parts with high precision and providing this advanced repair solution that is compatible with a variety of materials is a key benefit of Nikon additive manufacturing technology. LM300A supports metal materials such as Nickel based alloy (Ni625, Ni718), Stainless Steel (SUS316L), High Speed Steel (SKH51/M2/HS6-5-2) and Titanium alloy (Ti64/Ti-6Al-4V), and it is also an open system depending on customer requirements.


Nikon Metrology

Related Articles

TCT 3Sixty brochure

If you’re a designer, engineer or manufacturer looking to evaluate, adopt or optimise 3D printing for your business, TCT 3Sixty is the event for you.
2 years ago Sponsored Content

From ideas to reality

Proto Labs director, Damian Hennessey looks at how the UK aerospace industry is undergoing a transformation via the increasing adoption of digital manufacturing processes.
7 years ago Features
Most recent Articles

Glasgow to welcome latest Space-Comm conference

Registration for the inaugural Space-Comm Expo Scotland is now open. Space-Comm Expo, organised and owned by Hub Exhibitions, is the leading international space conference. This is the first time the Expo will come to Scotland, taking place September 11-12 at the SEC Glasgow.
2 days ago News

Mapal introduces NeoMill-Alu-QBig mills for aluminium

The NeoMill-Alu-QBig indexable insert milling cutter from Mapal stands for top performance in high-volume milling of aluminium. The tool manufacturer thus offers a very economical solution for use on high-performance machines, such as those found primarily in the aerospace industry.
2 days ago Products

Login / Sign up